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Figure 1: Generated results of the proposed MagiCapture, a multi-concept personalization method for integrating subject and
style concepts to generate high-resolution portrait images using just a few subject and style references.

Abstract

Large-scale text-to-image models including Stable Diffusion
are capable of generating high-fidelity photorealistic portrait
images. There is an active research area dedicated to person-
alizing these models, aiming to synthesize specific subjects
or styles using provided sets of reference images. However,
despite the plausible results from these personalization meth-
ods, they tend to produce images that often fall short of re-
alism and are not yet on a commercially viable level. This
is particularly noticeable in portrait image generation, where
any unnatural artifact in human faces is easily discernible
due to our inherent human bias. To address this, we intro-
duce MagiCapture, a personalization method for integrating
subject and style concepts to generate high-resolution por-
trait images using just a few subject and style references. For
instance, given a handful of random selfies, our fine-tuned
model can generate high-quality portrait images in specific
styles, such as passport or profile photos. The main challenge
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with this task is the absence of ground truth for the composed
concepts, leading to a reduction in the quality of the final out-
put and an identity shift of the source subject. To address
these issues, we present a novel Attention Refocusing loss
coupled with auxiliary priors, both of which facilitate robust
learning within this weakly supervised learning setting. Our
pipeline also includes additional post-processing steps to en-
sure the creation of highly realistic outputs. MagiCapture out-
performs other baselines in both quantitative and qualitative
evaluations and can also be generalized to other non-human
objects.

Introduction
To obtain high-quality portrait images suitable for resumes
or wedding events, individuals typically have to visit a photo
studio, followed by a costly and time-consuming process
of photo retouching. Imagine a scenario where all that’s re-
quired is a few selfie images and reference photos, and you
could receive high-quality portrait images in specific styles,
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such as passport or profile photos. This paper aims to auto-
mate this process.

Recent advancements in large-scale text-to-image mod-
els, such as Stable Diffusion (Rombach et al. 2022) and Im-
agen (Saharia et al. 2022), have made it possible to generate
high-fidelity, photorealistic portrait images. The active area
of research dedicated to personalizing these models seeks to
synthesize specific subjects or styles using provided sets of
train images. In this work, we formulate our task as a multi-
concept customization problem. Here, the source content
and reference style are learned respectively, and the com-
posed output is generated. Unlike text-driven editing, using
reference images allows users to provide fine-grained guid-
ance, making it more suitable for this task.

However, despite the promising results achieved by pre-
vious personalization methods, they often produce images
that lack realism and fall short of commercial viability. This
problem primarily arises from attempting to update the pa-
rameters of large models using only a small number of im-
ages. This decline in quality becomes even more evident in a
multi-concept generation, where the absence of ground truth
images for the composed concepts frequently leads to the
unnatural blending of disparate concepts or deviation from
the original concepts. This issue is particularly conspicuous
in portrait image generation, as any unnatural artifacts or
shifts in identity are easily noticeable due to our inherent
human bias.

To address these issues, we present MagiCapture, a multi-
concept personalization method for the fusion of subject and
style concepts to generate high-resolution portrait images
with only a few subject and style references. Our method
employs composed prompt learning, incorporating the com-
posed prompt as part of the training process, which enhances
the robust integration of source content and reference style.
This is achieved through the use of pseudo labels and aux-
iliary loss. Moreover, we propose the Attention Refocusing
loss in conjunction with a masked reconstruction objective,
a crucial strategy for achieving information disentanglement
and preventing information leakage during inference. Magi-
Capture outperforms other baselines in both quantitative and
qualitative assessments and can be generalized to other non-
human objects with just a few modifications.

The main contributions of our paper are as follows:

• We introduce a multi-concept personalization method ca-
pable of generating high-resolution portrait images that
faithfully capture the characteristics of both source and
reference images.

• We present a novel Attention Refocusing loss combined
with masked reconstruction objective, effectively disen-
tangling the desired information from input images and
preventing information leakage during the generation
process.

• We put forth a composed prompt learning approach that
leverages pseudo-labels and auxiliary loss, facilitating
the robust integration of source content and reference
style.

• In both quantitative and qualitative assessments, our
method surpasses other baseline approaches and, with

minor adjustments, can be adapted to generate images of
non-human objects.

Related Work

Text-to-image diffusion models Diffusion models (Ho,
Jain, and Abbeel 2020; Song and Ermon 2019; Song et al.
2020; Song, Meng, and Ermon 2020) have recently achieved
remarkable success in image generation, driving advance-
ments in various applications and fields. Their powerful
performance has significantly propelled the field of text-
guided image synthesis (Nichol et al. 2021; Kim, Kwon,
and Ye 2022; Saharia et al. 2022; Ramesh et al. 2022) for-
ward. In particular, large-scale text-to-image diffusion mod-
els, trained on extensive text-image pair datasets, have set
new benchmarks. Notable examples include Stable diffu-
sion (von Platen et al. 2022) and Imagen (Saharia et al.
2022). Our work is built upon the pre-trained stable diffu-
sion model.

Personalization Personalizing generative models for spe-
cific concepts is a key goal in the vision field. With the rise
of GANs, there have been efforts to fine-tune GANs, like
Pivotal Tuning (Roich et al. 2022), based on GAN inver-
sion (Zhu et al. 2020). More recently, studies have sought
to personalize diffusion models using small image datasets.
DreamBooth (Ruiz et al. 2023) fine-tunes entire weights,
Textual Inversion (Gal et al. 2022) adjusts text embeddings,
and Custom Diffusion (Kumari et al. 2023) adapts the map-
ping matrix for the cross-attention layer. While effective in
learning concepts, these models sometimes generate less re-
alistic or identity-losing images. Methods like ELITE (Wei
et al. 2023) and InstantBooth (Shi et al. 2023) employ a data-
driven approach for encoder-based domain tuning, which is
not directly comparable to our approach.

Preliminaries

Diffusion models Diffusion models (Ho, Jain, and Abbeel
2020; Song and Ermon 2019; Song et al. 2020; Song, Meng,
and Ermon 2020) are a class of generative models that create
images through an iterative denoising process. These mod-
els comprise a forward and backward pass. During the for-
ward pass, an input image x(0) is progressively noised us-
ing the equation x(t) =

√
αtx

(0) +
√
1− αtϵ, where ϵ rep-

resents standard Guassian noise and {αt} is a pre-defined
noise schedule with timestep t, 1 < t < T . During back-
ward pass, the generated image is obtained by denoising the
starting noise xT using a UNet ϵθ(x(t), t), which is trained
to predict noise at the input timestep t. Latent diffusion mod-
els (LDM) (Rombach et al. 2022) are a variant of diffu-
sion models where the denoising process occurs in the latent
space. Specifically, an image encoder E is used to transform
the input image x into a latent representation z, such that
E(x) = z. During inference, the denoised latent representa-
tion is decoded to produce the final image x(0)′ = D(z(0)),
where D represents the decoder of an autoencoder. Stable
diffusion (von Platen et al. 2022) is a text-guided latent dif-
fusion model (LDM) trained on large-scale text-image pairs.
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Figure 2: The overall pipeline of MagiCapture, where the training process is formulated as multi-task learning of three different
tasks: source, reference, and composed prompt learning. In the composed prompt learning, reference style images serve as
pseudo-labels, along with auxiliary identity loss between the source and predicted images. Attention Refocusing loss is applied
to all three tasks, but is not shown in the figure for simplicity. After training, users can generate high-fidelity images with
integrated concepts and can further manipulate them using varying text conditions.

It has the following objective:

LLDM = Ez,c,ϵ,t

[
||ϵθ(z(t), t, c)− ϵ||22

]
, (1)

where c refers to the text condition.

Customization of text-to-image models Several previous
works have focused on the customization of text-to-image
diffusion models, including DreamBooth (Ruiz et al. 2023),
Textual Inversion (Gal et al. 2022), Custom Diffusion (Ku-
mari et al. 2023), and others. These works employ pre-
trained Stable Diffusion (Rombach et al. 2022), utilizing a
small set of images, typically 3 ∼ 5 images, associated
with a particular object or style and incorporating special-
ized text tokens to embed such concepts. For instance, when
customizing models for a specific dog, the prompt ”a [V 1]
dog” is used so that the special token can learn information
specific to the dog. This customization involves finetuning
the diffusion model based on the same reconstruction objec-
tive of Eq. (1), where c is the text prompt with the special
token, and z = E(x), where x is sampled from a set of im-
ages for customization.

Different methods finetune distinct components of the
diffusion models. DreamBooth fine-tunes the entire UNet
model, Textual Inversion exclusively adjusts the CLIP text
embedding of the special token, and Custom Diffusion opti-
mizes the key and value mapping matrices within the cross-
attention layer of the UNet.

Attention maps Large-scale text-to-image diffusion mod-
els utilize cross-attention layers for text-conditioning. In
Stable Diffusion (Rombach et al. 2022), CLIP text en-
coder (Radford et al. 2021) is used to produce text embed-
ding features. These text embeddings are then transformed
to obtain the key K and value V for the cross-attention layer
through linear mapping, and spatial feature of image is pro-
jected to query Q. The attention map of the cross-attention
layer is computed as:

A = softmax
(QKT

√
d

)
. (2)

The attention map corresponding to a specific token with in-
dex k can be obtained as Ak = A[k]. Such attention maps
are useful for visualizing the influence of individual tokens
in the text prompt. Moreover, they can be altered or manip-
ulated for the purpose of image editing, as demonstrated in
Prompt-to-Prompt (Hertz et al. 2022).

Method
Given a small set of source images and reference style im-
ages, the goal of this paper is to synthesize images that inte-
grate the source content with the reference style. While our
method is primarily designed for generating portrait images,
it can be easily adapted to handle other types of content with
minor modifications. We utilize the customization of each



Figure 3: Visualization of aggregated attention maps from
UNet layers before and after the application of Attention Re-
focusing (AR) loss illustrates its importance in achieving in-
formation disentanglement and preventing information spill.

concepts during the optimization phase and employ a com-
posed prompt during inference to generate multi-concept
images. A comprehensive overview of our approach is de-
picted in Fig. 2, and the details of our method will be elabo-
rated upon in the subsequent sections.

Two-phase Optimization Similar to Pivotal Tun-
ing (Roich et al. 2022) in GAN inversion, our method
consists of two-phase optimization. In the first phase, we
optimize the text embeddings for the special tokens [V ∗]
using the reconstruction objective as in (Gal et al. 2022).
While optimizing the text embeddings is not sufficient
for achieving high-fidelity customization, it serves as a
useful initialization for the subsequent phase. In the second
phase, we jointly optimize the text embeddings and model
parameters with the same objective. Rather than optimizing
the entire model, we apply the LoRA (Hu et al. 2021),
where only the residuals ∆W of the projection layers
in the cross-attention module are trained using low-rank
decomposition. Specifically, the updated parameters are
expressed as:

W
′
= W +∆W, ∆W = UV T , (3)

where U ∈ Rn×r, V ∈ Rm×r, and r << n,m. Empirically,
we find that this two-phase optimization coupled with LoRA
strikes a favorable balance between reconstruction and gen-
eralization. It preserves the model’s generalization capabili-
ties for unseen prompts while effectively capturing the finer
details of the source images.

Masked Reconstruction In our approach, a source
prompt cs (e.g., A photo of [V 1] person.) and a reference
prompt cr (e.g., A photo of a person in the [V 2] style.) are
used to reconstruct the source image Is and a target style im-
age Ir respectively. It is crucial to disentangle the identity of
the source subject from non-facial regions, such as the back-
ground and clothing, to prevent this unwanted information
from being encoded into the special token [V 1]. Similarly,

we need to disentangle the reference image to ensure that
the facial details of the person in the reference image are not
embedded into the special token [V 2]. To achieve this, we
propose to use a masked reconstruction loss. Specifically,
we employ a mask that indicates the relevant region and ap-
ply it element-wise to both the ground truth latent code and
the predicted latent code. In the context of portrait gener-
ation, a source mask Ms indicates the facial region of the
image Is, and a target mask Mr denotes the non-facial areas
of the reference image Ir. Formally, the masked reconstruc-
tion loss for the source and the reference prompts are given
by:

Ls
mask = Ezs,cs,ϵ,t

[
||ϵ⊙Ms−ϵθ(z

(t)
s , t, cs)⊙Ms||22

]
, (4)

Lr
mask = Ezr,cr,ϵ,t

[
||ϵ⊙Mr−ϵθ(z

(t)
r , t, cr)⊙Mr||22

]
, (5)

where z(t)s and z
(t)
r are the source and reference noised latent

at timestep t ∼ Uniform(1, T ) and ϵ ∼ N (0, I).

Composed Prompt Learning Generating images with a
composed prompt cc such as ”A photo of a [V 1] person
in the [V 2] style,” leads to undefined behavior because the
model had not been customized on such prompts. Typically,
the resulting images generated using these unseen composed
prompts suffer from a shift in the identity of the source
subject and a decline in output quality. To address this is-
sue, we include training on the composed prompt. However,
no ground truth image exists for such a prompt. We ap-
proach this challenge as a weakly-supervised learning prob-
lem, where there are no available ground truth labels. We
craft pseudo-labels and develop an auxiliary objective func-
tion to suit our needs. In the context of the portrait gener-
ation task, we want to retain the overall composition, pose,
and appearance from the reference style image, excluding
the facial identity. To achieve this, we employ the masked
reconstruction objective given by:

Lc
mask = Ezr,cc,ϵ,t

[
||ϵ⊙Mr−ϵθ(z

(t)
r , t, cc)⊙Mr||22

]
. (6)

For the facial regions, we use an auxiliary identity loss that
utilizes a pre-trained face recognition model (Deng et al.
2019) R and cropping function B conditioned by the face
detection model (Deng et al. 2020):

Lid = Ex̂(0),Is

[
1− cos(R(B(x̂(0))),R(B((Is)))

]
, (7)

where cos denotes the cosine similarity and x̂(0) = D(ẑ(0))

refers to the estimated clean image from z
(tid)
r using

Tweedie’s formula (Kim and Ye 2021). Timestep tid is sam-
pled as tid ∼ Uniform(1, T

′
), where T

′
< T , to avoid blurry

and inaccurate x̂(0) estimated from noisy latent with large
timesteps, which can impair cropping or yield odd facial em-
beddings.

We augment the composed prompt cc by randomly se-
lecting from predefined prompt templates to boost editing
stability and generalization.



Method CSIM ↑ Style ↑ Aesthetic ↑
DreamBooth 0.102 0.720 5.770

Textual Inversion 0.224 0.623 5.670
Custom Diffusion 0.436 0.606 5.263

Ours w/o AR & CP 0.429 0.726 6.178
Ours 0.566 0.730 6.218

Table 1: Quantitative comparison of our method against
DreamBooth (Ruiz et al. 2023), Textual Inversion (Gal et al.
2022), and Custom Diffusion (Kumari et al. 2023). Our
method outperforms other baselines in terms of identity
similarity measured between the source images (CSIM),
masked CLIP similarity measure (Style), and Aesthetic
score (Schuhmann Aug 2022).

Attention Refocusing When optimizing with training im-
ages, it is vital to achieve information disentanglement, en-
suring that special tokens exclusively embed the informa-
tion of the region of interest, denoted as Mv for v ∈ {s, r}.
However, the masked reconstruction objective falls short of
this goal because the presence of transformer layers in the
UNet backbone gives the model a global receptive field. The
same limitation applies to denoising steps in the inference
stage, where we desire attention maps of special tokens to
focus only on the intended areas. For instance, in the portrait
generation task, the special token [V 1] should only attend
to facial regions when generating images to avoid informa-
tion spill. We observe that information spill is more preva-
lent when the model encounters an unseen prompt during
inference. Fig. 3 demonstrates that special tokens do indeed
attend to unwanted regions.

To solve this issue, we propose a novel Attention Refo-
cusing (AR) loss, which steers the cross attention maps Ak

of the special token [V ∗] (where k = index([V ∗])) using
a binary target mask. Our AR loss incorporates two crucial
details: First, it is applied only to regions where ¬Mv , where
the mask value is zero. For the attention map values Ak[i, j]
where (i, j) ∈ {(i, j)|Mv[i, j] = 1}, the optimal values can
vary across different UNet layers and denoising time steps,
so they do not necessarily have to be close to 1. Conversely,
for Ak[i, j] where (i, j) ∈ {(i, j)|Mv[i, j] = 0}, the val-
ues should be forced to 0 to achieve information disentan-
glement during training and minimize information spill in
the inference stage. Second, it is essential to scale the atten-
tion maps to the [0,1] range. Both of these techniques are re-
quired to avoid disrupting the pre-trained transformer layers’
internal operations, which would lead to corrupted outputs.
The Attention Refocusing loss can be formulated as follows:

Lattn = Ek,v∈{s,r}

[
||(S(Ak)−Mv)⊙ ¬Mv||22

]
, (8)

where S(·) refers to a scaling function.

Postprocessing The quality of images generated in a few-
shot customization task is typically constrained by the ca-
pabilities of the pretrained text-to-image model used. More-
over, when provided with low-resolution source and target
images, the fine-tuned model tends to produce lower-quality
images. To overcome these limitations and further enhance

the fidelity of the generated images, our pipeline includes
optional postprocessing steps. Specifically, we employ a pre-
trained super-resolution model (Wang et al. 2021) and a face
restoration model (Zhou et al. 2022) to further improve the
quality of the generated samples.

Experiments

Training Details Our method utilizes pre-trained Stable
Diffusion V1.5 (Rombach et al. 2022). The first training
phase consists of a total of 1200 steps, with a learning rate
5e-4 for updating the text embeddings. In the second LoRA
phase, the learning rate is 1e-4 for the projection layers and
1e-5 for the text embeddings, with a total of 1500 training
steps. The model is trained on a single GeForce RTX 3090
GPU, using a batch size of 1 and gradient accumulation over
4 steps. For all experiments, we employ 4 to 6 images for
both the source and reference images. Please refer to the
supplement for more details.

Comparisons The results of our method are demonstrated
in Fig. 4. We compare our method with other personalization
methods including DreamBooth (Ruiz et al. 2023), Textual
Inversion (Gal et al. 2022), and Custom Diffusion (Kumari
et al. 2023) using the same source and reference images.
We choose 10 identities, 7 from VGGFace (Cao et al. 2018)
and 3 in-the-wild identities gathered from the internet. We
also manually select 10 style concepts, leading to 100 id-
style pairs. For each pair, we train each baseline and our
model, then generate 100 images with the composed prompt
for each of the trained model, resulting in 10,000 samples
per baseline. Qualitative comparisons are shown in Fig. 5,
where our method outperforms other baselines in image fi-
delity and source-reference image reflection.

We assess the facial appearance similarity between the
source and generated portrait images by measuring the co-
sine similarity between their facial embeddings, using a pre-
trained recognition network (CSIM) (Zakharov et al. 2019).

Another important aspect of evaluation is style preser-
vation, where we measure how well the results replicate
the style of the reference images. We compute the cosine
similarity between the masked CLIP (Radford et al. 2021)
image embeddings of the reference and generated images,
where facial regions are masked to exclude facial appear-
ance from the assessment. We use CLIP similarity instead of
texture similarity (Gatys, Ecker, and Bethge 2016) since the
term style in our paper encompasses broader concepts such
as image geometry and composition, in addition to texture
and appearance of non-facial regions. Finally, we evaluate
the overall image fidelity with the LAION aesthetic predic-
tor (Schuhmann Aug 2022). Table 1 shows that our method
outperforms other baselines in all three metrics. Addition-
ally, we conduct a user study involving 30 participants who
were asked to rate images for ID preservation, style preser-
vation, and image fidelity on a 1-5 scale. Table 2 summarizes
the results, with our method consistently scoring higher than
other baselines.

We observed that DreamBooth often overfits to the refer-
ence style images, leading to high style scores but low CSIM
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Figure 4: Curated results of MagiCapture.



Ours Textual InversionDreamBoothCustom Diffusion

Figure 5: Qualitative comparisons of MagiCapture with
other baseline methods.

Method ID ↑ Style ↑ Fidelity ↑
DreamBooth 2.025 3.648 2.683

Textual Inversion 2.907 3.038 2.965
Custom Diffusion 3.223 2.260 2.980

Ours 4.055 4.165 4.293

Table 2: User study of our method against Dream-
Booth (Ruiz et al. 2023), Textual Inversion (Gal et al. 2022),
and Custom Diffusion (Kumari et al. 2023). Our method
outperforms other baselines in terms of identity similarity
score (ID), style similarity measure (Style), and image fi-
delity score (Fidelity).

scores. Conversely, Textual Inversion tends to underfit both
the source and reference images, resulting in low-fidelity im-
ages that fail to preserve appearance details. Custom Diffu-
sion better preserves source identity compared to the others,
but still cannot consistently perform well for the composed
prompt, leading to identity shifts and unnatural images.

Ablation Study As shown in Fig. 3, we find that Attention
Refocusing loss effectively prevents attention maps from at-
tending to unwanted regions, mitigating information spill
and promoting information disentanglement. Empirically,
we observe that the Attention Refocusing loss should only
be applied during the second phase of training (LoRA train-
ing). We infer that text embeddings are not well-suited for
learning geometric information related to attention maps.
Moreover, without composed prompt learning, the gener-
ated images often exhibit undefined behaviors where only
one of the source or reference sets is evident in the image,
without blending. We present the evaluation metrics for both
the presence and absence of composed prompt learning (CP)
and Attention Refocusing (AR) in Table 1. For more results
and detailed analysis, please refer to the supplement.

Applications Since our method is robust to generaliza-
tions, users can further manipulate the composed results us-

[V1]

[V1]

[V2]

[V2] [V1] + [V2]

[V1] + [V2]

[V1] + [V2], wearing sunglasses

[V1] + [V2], Van Gogh painting

Figure 6: Users can further manipulate the composed results
using prompts with additional description.

ing prompts with more descriptions (e.g., c
′

c = “A photo
of [V 1] person in the [V 2] style, wearing sunglasses.”). We
demonstrate such results in Fig. 6 and in the supplement.

Figure 7: Failure cases: Proposed method occasionally pro-
duces abnormal body parts such as limbs, fingers

Limitations and Conclusions
Our method occasionally produces abnormal body parts
such as limbs, fingers, as shown in Fig. 7. Furthermore, the
model tends to exhibit lower fidelity for non-white subjects
and demonstrates a noticeable gender bias—for instance,
it struggles to accurately generate images of men wearing
wedding dresses. These issues are largely related to the in-
herent biases of the pre-trained text-to-image models, and
addressing these problems within a few-shot setting repre-
sents a significant avenue for future research. We acknowl-
edge the ethical implications of our work and are commit-
ted to taking them seriously. We are also proactive in lead-
ing and supporting efforts to prevent potential misuse of our
contributions.
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